上海速雷电力仪器有限公司
中级会员 | 第17年

13524849933

直流试送仪
核相仪系列
高压试验仪器
开关测试仪器
安规测量仪器
环保仪器仪表
变压器测试仪器
继电保护测试仪器
接地电阻测试仪器
绝缘电阻测试仪器
精密电工仪器仪表
接地电阻表检定装置 恒速器(配套绝缘电阻、接地电阻表检定) 交直流电流标准源 交直流电压标准源 十进电容箱 电桥专用夹具 数字电位差计 低热电势转换开关 接地导通电阻测试仪检定装置 绝缘电阻表多功能试验箱 万能电桥 宽范围电阻箱 直流标准电压电流发生器 直流电阻箱测试专用恒流源(简称恒流源) 电.雷.管阻值测试仪 绝缘电阻表检定装置 直流数字电压表 标准电池 数字转速表 直流检流计 直流电阻箱 直流电阻电桥 直流电位差计 直流标准电阻 指针式万用表 钳形电流电压表 精密电表 转换开关箱 双钳相位伏安表 三相电力分析仪 电桥校验标准器 电机故障诊断仪 指针电秒表 动平衡测量仪 滑线变阻器 变压比电桥 直流数字电阻测量仪
电力安全工具系列
其他检修仪器仪表
数字式直流电阻电桥 千斤顶特性检测系统(装置) 无线高低压电流互感器变比测试仪 高低压钳形漏电流表 电流互感器变比测试仪 柔性钳形电流表 大口径钳形漏电电流表 高低压电流电压表 扭矩转速仪 三相多功能电能表现场校验仪 发电机综合特性测试仪 多功能三相电测产品检定装置 非接触式相序表 无线高低压电压表 手持式局部放电检测仪 配网电流相位测试仪 变压器接地铁芯电流测试仪 钩式大电流表 相位伏安表 配电网接地故障定位仪 架空线路单相接地故障点巡查装置 架空线接地故障定位仪 SL8032数显相序表 数字微安表 高压测流仪 放电保护球隙 高压滤波电容 电缆故障测试仪 防雷元件测试仪 雷电计数器校验仪 漏电保护器测试仪 滑触线指示灯 电力测试导线 专用夹_鳄鱼夹 三相多功能伏安相位仪 集电器 安全滑触线 矿用杂散电流测定仪 电工产品 绝缘材料 上海安标仪器 大电流发生器 安全工具系列 轴承加热器 发电机电位外移测试仪 发电机转子交流阻抗测试仪
电力安全器具产品
测试导线测试器材
电缆故障测试、电缆热补机
振动测试仪,动平衡测试仪
真空滤油机
干燥空气发生器
SF6气体回收装置
全自动温升大电流系统
故障指示器测试仪
全自动三相温升装置
剩余电流发生器
电子式三倍频发生器
滑线变阻器系列
气体回收装置
补充电源装置
200A刷快带通讯 2X50A刷板刷块 200A充电刷板刷块 200A充电电刷 80A刷板刷块 80AAGV充电刷板刷块 20A充电电刷 80A刷板刷块 碳刷 AGV自动充电装置 200A刷板带通讯 带通讯带激光对射刷板刷块 50A单极加长刷板刷块 200A定制刷板刷块 100A刷板刷块 200A刷板刷块碳刷 白色50A刷板刷块 200A刷块带通讯 带围栏刷板 四极刷板刷块 AGV刷板刷块AGV充电智能电站接触式在线充电 70AAGV自动充电装置电滑口板刷板刷块 碳刷 100A电流 AGV自动充电集电器充电刷板刷块 50AAGV小车充电板配套刷板接触电刷板刷块 AGV电池充电刷版刷块 AGV智能电站受电板 200AAGV小车电池充电刷刷板刷块 AGV-20A充电装置 自动充电机 充电模组 35AAGV自动充电刷板刷块AGV集电器 70AAGV充电 充电模组 刷板刷块碳刷
接地故障定位仪
蓄电池充放电测试仪
智能蓄电池放电负载仪
蓄电池巡检仪
中性点接地UPS蓄电池在线测试仪
蓄电池组在线充放电活化设备
智能充电机
蓄电池内阻测试仪
蓄电池智能单体活化仪
48V100A AGV便携式智能充电机
过电压保护器测试仪
微机扭矩转速仪
氧化锌避雷器检测设备

精品视频一区二区三区 超导储能系统的磁屏蔽

时间:2011/12/15阅读:2257
分享:

随着对电力故障非常敏感的计算机和半导体器件的广泛应用,越来越多电力用户对供电质量提出了更高要求。储能技术能够有效地改善电力系统的稳定性,提高供电质量,因此储能技术的发展逐步受到重视。

超导磁体储能系统(Superconducting Magnetic Energy Storage, SMES)具有快速吸收、释放和储备电能的能力,并且储能密度高,结构紧凑。这为超导储能系统参与电力系统、改善供电质量提供了有利条件[1]。近些年来超导储能成为超导应用研究领域的一个热点。现在微型超导储能系统已实现产品化。今年, IGC公司的一台IPQ-750 SMES系统安装于美国Tyndall*基地,并成功并网运行[2]。

超导储能磁体作为一种电磁储能元件,在运行过程中会产生相当强的磁场。一般超导储能磁体产生的中心场强为104高斯数量级,但10高斯数量级的磁场就可以导致一些电子设备不能正常工作,5高斯的磁场就可能使一个配有心脏起博器的人面临生命危险[3]。因此,如果不采用相应的措施对磁场加以限制和屏蔽,杂散分布于超导磁体系统之外的漏磁场会对周围环境带来不利的影响。要扩大超导磁体储能系统的应用场合,减小超导磁体杂散磁场带来的应用限制,就必须考虑超导磁体系统的磁屏蔽问题。

2.超导储能磁体及磁场特点

电流在闭合超导线圈中流过时,没有常规线圈中出现的焦耳热损耗,发热较少。因此,与常规线圈相比,超导线圈的运行电流可以达到很高的水平。较高的运行电流就意味着可以产生较高的磁场,这也是大多数超导磁体不需要铁磁材料构成磁通回路,也能产生强磁场的原因。

超导磁体在运行时会产生具有一定场型分布的磁场,该磁场存储着一定的电磁能。在能量交换时,超导储能系统利用的是这个磁场的相应电磁储能,而不是具体的磁场场形,磁场的分布状态并不对能量交换起直接作用。因此早期超导储能磁体设计的一个基本目标是用尽可能少的超导材料存储尽可能大的电磁能量。并且在设计过程中不需要直接考虑磁场的场型。

由于超导储能系统储能密度高,整个储能装置可以做得相当紧凑。体积小、储能高是超导储能系统的一个优势。由于体积小、重量轻,超导磁体储能系统还具有一定的可移动性。这在某些特殊场合显得尤为重要。

高场强、能量转换不受场型限制、结构紧凑,这三个特性是考虑超导储能系统磁屏蔽问题的基本出发点。

3.屏蔽方法的选取

目前,超导储能系统的超导磁体主要采用两种结构形式:螺管线圈和环形线圈。环形线圈由于自身的结构特点,在理想状态下,线圈产生的磁场*封闭于线圈内部,没有漏磁,实际建造的环形磁体的漏磁也很小[4]。因而精品视频一区二区三区 超导储能系统的磁屏蔽主要是对螺管形式的超导磁体。

螺管型超导磁体已广泛应用于MRI系统中,根据MRI系统的磁场屏蔽经验,超导磁体有三种可能的屏蔽方式:房屋屏蔽、铁磁屏蔽和主动屏蔽[5]。

房屋屏蔽要求将超导磁体安装于位置固定的于磁屏蔽的房间内。理想的超导储能系统应该是具有一定的可移动性,并且有时SMES用户很难单独提供一个屏蔽房屋以容纳超导磁体。从这个角度看,房屋屏蔽不太合适。

简单地说铁磁屏蔽就是利用铁磁材料为磁通提供回路,从而改变其磁场场形,将磁场尽量限制在磁体附近的区域,达到减小漏磁场的效果。由于超导磁体产生的磁场较强,用普通铁磁材料进行屏蔽很容易使材料进入饱和状态,导致屏蔽效率低,铁磁材料用量大。这就使整个超导储能装置的体积和重量显著增加,不利于超导储能系统的应用。例如,如果用铁磁材料屏蔽一个3.43MJ的超导储能系统,使5高斯等磁密线所包围面积减小一个数量级,就要增加16吨铁磁材料;而对20MJ的系统,则要增加100吨的铁磁材料[6]。可见单纯的铁磁屏蔽不适合超导磁体的磁屏蔽。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言