技术文章
ICP-AES、AAS及ICP—MS的性能及应用
阅读:2377 发布时间:2018-7-28
随着
ICP-AES
的流行使很多的分析家在问购买一台
ICP-AES
是否是明智之举.还是留在原来可信赖的
AAS
上。现在一个新技术
lCP-MS
已呈现在世上,虽然价格较高,但
ICP-MS
具有
ICP-AES
的优点及比石墨炉原子吸收
(AAS)
更低的检出限。
这篇文章简要地论述这三种技术,并指出如何根据你的分析任务来判断其适用性。
对于拥有
ICP-AES
技术背景的人来讲,
ICP-MS
是一个以质谱仪作为检测器的等离子体
(ICP)
,而质谱学家则认为
ICP-MS
是一个以
ICP
为源的质谱仪。事实上,
ICP-AES
和
ICP-MS
的进样部分及等离子体是极其相似的。
ICP-AES
测量的是光学光谱
(165
~
800nm)
,
ICP-MS
测量的是离子质谱,提供在
3
~
250amu
范围内每一个原子质量单位
(amu)
的信息,因此,
ICP-MS
除了元素含量测定外,还可测量同位素。
检出限
ICP-MS
的检出限给人极深刻的印象,其溶液的检出限大部份为
ppt
级
(
必需记牢,实际的检出限不可能优于你实验室的清洁条件
)
,石墨炉
AAS
的检出限为亚
ppb
级,
ICP-AES
大部份元素的检出限为
1
~
10ppb
,一些元素在洁净的试样中也可得到令人注目的亚
ppb
级的检出限。必须指出,
ICP- MS
的
ppt
级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于
ICP-MS
的耐盐量较差,
ICP-MS
检出限的优点会变差多达
50
倍,一些普通的轻元素
(
如,
S
、
Ca
、
Fe
、
K
、
Se)
在
ICP-MS
中有严重的干扰,也将恶化其检出限。
干扰
以上三种技术呈现了不同类型及复杂的干扰问题.为此,我们对每个技术分别予以讨论。
ICP-MS
的干扰
1. 质谱干扰 :ICP-MS 中质谱的干扰 ( 同量异位素干扰 ) 是预知的,而且其数量少于 300 个,分辨率为 0 . 8amu 的质谱仪不能将它们分辨开,例如, 58Ni 对 58Fe 、 40Ar 对 40Ca 、 40Arl60 对 56Fe 或 40Ar-Ar 对 80Se 的干扰 ( 质谱叠加 ) 。元素校正方程式 ( 与 ICP-AES 中干扰谱线校正相同的原理 ) 可用来进行校正,选择性地选用一些低自然丰度的同位素、采用 “ 冷等离子体炬焰屏蔽技术 ” 或 “ 碰撞池技术 ” 可有效地降低干扰影响。
2. 基体酸干扰 : 必须指出, HCI 、 HCIO4 、 H3PO4 和 H2S04 将引起相当大的质谱干扰。 Cl+ 、 P+ 、 S+ 离子将与其他基体元素 Ar+ 、 O+ 、 H+ 结合生成多原子,例如, 35Cl 40Ar 对 7s 、 35Cl160 对 51V 的叠加干扰。因此,在 ICP-MS 的许多分析中避免使用 HCl 、 HClO4 、 H3PO4 和 H2SO4 是至关重要的,但这是不可能的。克服这个问题的方法有 “ 碰撞池技术 ” 、在试样导入 ICP 之前使用色谱 ( 微栓 ) 分离、电热蒸发 (ETV) 技术等,另外一个比较昂贵的选择是使用高分辩率的扇形磁场的 ICP-MS ,它具有分辩小于 0 . 01amu 的能力,可以清除许多质谱的干扰。 ICP-MS 分析用的试液通常用硝酸来配制。
3. 双电荷离子干扰: 双电荷离子产生的质谱干扰是单电荷离子 M / Z 的一半,例如 138Ba2+ 对 69Ga+ ,或 208pb2+ 对 104Ru+ 。这类干扰是比较少的,而且可以在进行分析前将系统 zui 佳化而有效地消除。
4. 基体效应 : 试液与标准溶液粘度的差别将改变各个溶液产生气溶胶的效率,采用基体匹配法或内标法可有效地消除。
5. 电离干扰 : 电离干扰是由于试样中含有高浓度的第 1 族和第 1I 族元素而产生的,采用基体匹配、稀释试样、标准加入法、同位素稀释法、萃取或用色谱分离等措施来解决是有效的。
6.
空间电荷效应
:
空间电荷效应主要发生在截取锥的后面,在此处的净电荷密度明显的偏离了零。高的离子密度导致离子束中的离子之间的相互作用,形成重离子存在时首先损失掉轻离子,例如,
Pb+
对
Li3+
。基体匹配或仔细在被测物质的质量范围内选用内标有助于补尝这个影响,但这在实际应用是有困难的。同位素稀释法虽有效.但费用高,简单而
zui
有效的方法是稀释样品。
lCP-AES
干扰
1.
光谱干扰
:ICP-AES
的光谱干扰其数量很大而较难解决,有记录的
ICP-AES
的光谱谱线有
50000
多条,而且基体能引起相当多的问题。因此,对某些样品,例如,钢铁、化工产品及岩石的分析必须使用高分辩率的光谱仪。广泛应用于固定通道
ICP-AES
中的干扰元素校正能得到有限度的成功。
ICP-AES
中的背景较高,需离线背景校正,应用动态背景校正对增进准确度是很有效的。各种分子粒子
(
如,
OH)
的谱峰或谱带对某些低含量的被测元素会引起一些分析问题,影响其在实际样品中检出限。
在 ICP-MS 中的背景是相当低的,典型的是小于 5 C / S( 计数/秒 ) ,这就是 ICP-MS 具有*的检出限的一个主要理由。
2. 基体效应 : 与 ICP-MS 一样, ICP-AES 可以应用内标来解决例如雾化室效应、试样与标准溶液之间粘度差异所带来的基体效应。
3.
电离干扰
:
仔细选用每个元素的分析条件或加入电离缓衡剂
(
如,过量的
I
族元素
)
可以减少易电离元素的影响。
AAS
干扰
1 .光谱干扰 : 使用氘灯背景校正的 AAS 有少许光谱干扰,但使用 Zeeman 背景校正的 AAS 能去除这些干扰。
2 .背景干扰 : 在原子化过程中,针对不同的基体,应仔细设定灰化步聚的条件以减少背景信号。采用基体改进剂有助于增加可以容许的灰化温度。在很多 AAS 应用中,与氘灯扣背景相比, Zeeman 扣背景可得到更好的准确度。
3 .气相干扰 : 这是由于被测物质的原子蒸汽进入一个较冷的气体环境而形成的。现在采用等温石墨管设计和平台技术,试样被原子化后进入一个热的惰性气体环境,可有效减少这种干扰。
4
.基体效应
:
基体效应是被测物质在石墨管上不同的残留而生成的,它取决于样品的种类,应用基体改性剂和热注射能十分有效地减少这些影响。
容易使用
在日常工作中,从自动化来讲,
lCP-AES
是
zui
成熟的,可由技术不熟练的人员来应用
ICP-AES
专家制定的方法进行工作。
ICP-MS
的操作直到现在仍较为复杂,自
1993
年以来,尽管在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,
ICP-MS
的方法研究也是很复杂及耗时的工作。
AAS
的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。
试样中的总固体溶解量
TDS
在常规工作中,
ICP-AES
可分析
10
%
TDS
的溶液,甚至可以高至
30
%的盐溶液。在短时期内
ICP-MS
可分析
0.5
%的溶液,但大部分分析人员乐于采用
zui
多
0.2
%
TDS
的溶液。当原始样品是固体时,与
ICP-AES
,
AAS
相比,
ICP-MS
需要更高倍数的稀释.其折算到原始固体样品中的检出限显示不出很大优势的现象也就不令人惊奇了。
线性动态范围
LDR
ICP-MS
具有超过下的五次方的
LDR
,各种方法可使其
LDR
开展至十的八次方,但不管如何,对
ICP-MS
来说:高基体浓度会导致许多问题,而这些问题的
zui
好解决方案是稀释,正由于这个原因,
ICP-MS
应用的主要领域在痕量/超痕量分析。
AAS
的
LDR
限制在
2-3
个数年量级,如选用次灵敏线可进行高一些浓度的分析。
ICP-AES
具有
5
个以上数量级的
LDR
且抗盐份能力强,可进行痕量及主量元素的测定,
ICP-AES
可测定的浓度高达百分含量,因此,
ICP-AES
外加
ICP-MS
,或
AAS
可以很好地满足实验室的需要。
精密度
ICP-MS
的短期精密度一般是
1-3
%
RSD
,这是应用多内标法在常规工作中得到的。长期
(
几个小时
)
精密度为小于
5
%
RSD
。使用同位素稀释法可以得到很好的准确度和精密度,但这个方法的费用对常规分析来讲是太贵了。
ICP-AES
的短期精密度一般为
0.3
~
2
%
RSD
,几个小时的长期精密度小于
3
%
RSD
。
AAS
的短期精密度为
0.5-5
%
RSD
,长期精密度的因素不在于时间而视石墨管的使用次数而定。
样品分析能力
ICP-MS
有惊人的能力来分析大量测定痕量元素的样品,典型的分析时间为每个样品小于
5
分钟,在某些分析情况下只需
2
分钟。
Consulting
实验室认为
ICP-MS
的主要优点即是其分析能力。
ICP-AES
的分析速度取决于是采用全谱直读型还是单道扫描型,每个样品所需的时间为
2
或
6
分钟,全谱直读型较快,一般为
2
分钟测定一个样品。
AAS
的分析速度为每个样品中每个元素需
3
~
4
分钟,晚上可以自动工作,这样保证对样品的分析能力。
根据溶液的浓度举例如下,以参考:
1.
每个样品测定
1
~
3
个元素,元素浓度为亚或低于
ppb
级,如果被测元素要求能满足的情况下,
AAS
是
zui
合适的。
2.
每个样品
5
~
20
个元素,含量为亚
ppm
至%,
ICP-AES
是
zui
合适的。
3.
每个样品需测
4
个以上的元素,在亚
ppb
及
ppb
含量,而且样品的量也相当大,
ICP-MS
是较合适的。
无人控制操作
ICP-MS
,
ICP-AES
,和
AAS
,由于现代化的自动化设计以及使用惰性气体的安全性.可以整夜无人看管工作。为了的分析生产,整夜开机工作是可取的。
运行的费用
ICP -MS
开机工作的费用要高于
ICP-AES
,因为,
ICP-MS
的一些部件有一定的使用寿命而且需要更换,这些部件包括了涡轮分子泵、取样锥和截取锥以及检测器。对于
ICP-MS
和
ICP-AES
来讲,雾化器与炬管的寿命是相同的。如果实验室选用了
ICP-AES
来取代
ICP-MS
,那么实验室
zui
好能配备
AAS
。
AAS
应计算其石墨管的费用。在上述三种技术中
Ar
气的费用是一笔相当的预算,
ICP
技术
Ar
费用远高于
AAS
。
基本费用
这是难于限定的一个项目,因为费用是根据自动化程度、附件与供应商而定的。大概的估计
ICP-AES
是
AAS
的两倍,而
ICP-MS
是
lCP-AES
的两倍。必须注意到附件的配置将打乱费用的估计。另外,必须考虑到超痕量分析需要一个干净的实验室和超纯的化学试剂,这些的费用不便宜。
附件
由于是快速扫描测定方式,
ICP-MS
能对多元素模式中的瞬间信号进行测量,这就为大量附件打开了出路,电热蒸法、激光消蚀、辉光放电及火花消蚀等技术可以免除样品的溶解过程。有些附件可以将样品中的基体物质进行分离或进行预富集,例如,氢化法、色谱
(
高压液相
HPLC
、离子色谱、微栓
)
等。
用色谱来分离的好处在
ICP-MS
中得到*的实现,它适合用于环保,毒理学,药品及食品中低浓度的被测物质。
虽然,
ICP-AES
也能采用上述的某些附件,但由于这些附件的价格及有限的好处,因此,很少看到它们在
lCP-AES
的常规分析中应用。